首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1913篇
  免费   132篇
  2023年   5篇
  2022年   4篇
  2021年   31篇
  2020年   16篇
  2019年   27篇
  2018年   54篇
  2017年   44篇
  2016年   65篇
  2015年   104篇
  2014年   122篇
  2013年   149篇
  2012年   176篇
  2011年   127篇
  2010年   106篇
  2009年   90篇
  2008年   145篇
  2007年   139篇
  2006年   99篇
  2005年   96篇
  2004年   97篇
  2003年   85篇
  2002年   73篇
  2001年   27篇
  2000年   36篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1985年   2篇
  1984年   4篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有2045条查询结果,搜索用时 584 毫秒
991.
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)(-1)), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L(-1) h(-1) and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L(-1) h(-1); yield 59%).  相似文献   
992.
993.
Trehalose 6,6′-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle−/− mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses.  相似文献   
994.
995.
Intestinal organoids have recently emerged as an in vitro model relevant to the gut system owing to their recapitulation of the native intestinal epithelium with crypt–villus architecture. However, it is unclear whether intestinal organoids reflect the physiology of the in vivo stress response. Here, we systemically investigated the radiation response in organoids and animal models using mesenchymal stem cell-conditioned medium (MSC-CM), which contains secreted paracrine factors. Irradiated organoids exhibited sequential induction of viability loss and regrowth after irradiation (within 12 days), similar to the response of the native intestinal epithelium. Notably, treatment with MSC-CM facilitated the reproliferation of intestinal stem cells (ISCs) and restoration of damaged crypt-villus structures in both models. Furthermore, Wnt/Notch signaling pathways were commonly upregulated by MSC-CM, but not radiation, and pharmacologically selective inhibition of Wnt or Notch signaling attenuated the enhanced recovery of irradiated organoids, with increases in ISCs, following MSC-CM treatment. Interestingly, the expression of Wnt4, Wnt7a, and active β-catenin was increased, but not notch family members, in MSC-CM-treated organoid after irradiation. Treatment of recombinant mouse Wnt4 and Wnt7a after irradiation improved to some extent intestinal epithelial regeneration both in vitro and in vivo. Overall, these results suggested that intestinal organoids recapitulated the physiological stress response of the intestinal epithelium in vivo. Thus, our findings provided important insights into the physiology of intestinal organoids and may contribute to the development of strategies to enhance the functional maturation of engineered organoids.  相似文献   
996.
Standard-of-care therapy for glioblastomas, the most common and aggressive primary adult brain neoplasm, is maximal safe resection, followed by radiation and chemotherapy. Because maximizing resection may be beneficial for these patients, improving tumor extent of resection (EOR) with methods such as intraoperative 5-aminolevulinic acid fluorescence-guided surgery (FGS) is currently under evaluation. However, it is difficult to reproducibly judge EOR in these studies due to the lack of reliable tumor segmentation methods, especially for postoperative magnetic resonance imaging (MRI) scans. Therefore, a reliable, easily distributable segmentation method is needed to permit valid comparison, especially across multiple sites. We report a segmentation method that combines versatile region-of-interest blob generation with automated clustering methods. We applied this to glioblastoma cases undergoing FGS and matched controls to illustrate the method's reliability and accuracy. Agreement and interrater variability between segmentations were assessed using the concordance correlation coefficient, and spatial accuracy was determined using the Dice similarity index and mean Euclidean distance. Fuzzy C-means clustering with three classes was the best performing method, generating volumes with high agreement with manual contouring and high interrater agreement preoperatively and postoperatively. The proposed segmentation method allows tumor volume measurements of contrast-enhanced T1-weighted images in the unbiased, reproducible fashion necessary for quantifying EOR in multicenter trials.  相似文献   
997.

Background  

This study aimed to investigate the long-term mortality and recurrence rate of stroke in first-time stroke patients with symptomatic isolated middle cerebral artery disease (MCAD) under medical management.  相似文献   
998.
Summary Cyclic variations in resistance to ozone-inactivation were observed during the cell cycle of a haploid strain of Saccharomyces cerevisiae. The lag and G1 phases showed the highest sensitivity to ozone whereas there was a progressive increase in resistance from the S to G2 phases as the proportion of dividing cells increased. A related series of S. cerevisiae varying in ploidy from haploid to tetraploid was exposed to ozone. The results demonstrated clearly an enhancement of ozone resistance directly related to the ploidy of the cells.Taken together these data suggest that resistance to ozone is dependent upon the action of an efficient repair mechanism. Similarities and differences between the biological action of ozone and ionizing radiations in S. cerevisiae are discussed.  相似文献   
999.
The zeta chain-associated 70-kDa protein (ZAP-70) of tyrosine kinase plays a critical role in T cell receptor-mediated signal transduction and the immune response. A high level of ZAP-70 expression is observed in leukemia, which suggests ZAP-70 as a logical target for immunomodulatory therapies. (-)-Epigallocatechin gallate (EGCG) is one of the major green tea catechins that is suggested to have a role as a preventive agent in cancer, obesity, diabetes, and cardiovascular disease. Here we identified ZAP-70 as an important and novel molecular target of EGCG in leukemia cells. ZAP-70 and EGCG displayed high binding affinity (Kd = 0.6207 micromol/liter), and additional results revealed that EGCG effectively suppressed ZAP-70, linker for the activation of T cells, phospholipase Cgamma1, extracellular signaling-regulated kinase, and MAPK kinase activities in CD3-activated T cell leukemia. Furthermore, the activation of activator protein-1 and interleukin-2 induced by CD3 was dose-dependently inhibited by EGCG treatment. Notably, EGCG dose-dependently induced caspase-mediated apoptosis in P116.cl39 ZAP-70-expressing leukemia cells, whereas P116 ZAP-70-deficient cells were resistant to EGCG treatment. Molecular docking studies, supported by site-directed mutagenesis experiments, showed that EGCG could form a series of intermolecular hydrogen bonds and hydrophobic interactions within the ATP binding domain, which may contribute to the stability of the ZAP-70-EGCG complex. Overall, these results strongly indicated that ZAP-70 activity was inhibited specifically by EGCG, which contributed to suppressing the CD3-mediated T cell-induced pathways in leukemia cells.  相似文献   
1000.
Park CH  Kang JS  Yoon EH  Shim JW  Suh-Kim H  Lee SH 《FEBS letters》2008,582(5):537-542
Roles of Nurr1 and neurogenin 2 (Ngn2) have been shown in midbrain dopamine (DA) neuron development. We present here rat and mouse species-dependent differences of Nurr1 and Ngn2 actions in DA neuron differentiation. Nurr1 exogene expression caused an efficient generation of tyrosine hydroxylase (TH)-positive DA cells from rat neural precursor cells (NPCs). Nurr1-induced TH+ cell yields were low and highly variable depending on the origins of NPCs in mouse cultures. Coexpression of Ngn2 repressed Nurr1-induced generation of TH+ cells in rat cultures. In clear contrast, a robust enhancement in Nurr1-induced DA cell yields was observed in mouse NPCs by Ngn2. These findings imply that DA neurons may develop differently in the midbrains of these two species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号